Main Article Content

Leny Margaretha Huizen
Roy Rudolf Huizen

Abstract

Penggunaan teknologi berbasis Internet of Things (IoT) telah meningkat pesat berkat revolusi digital dan membawa tantangan keamanan yang signifikan. Pengoptimalan keamanan IoT pada edge computing dengan menerapkan model berbasis machine learning, untuk deteksi dan identifikasi. Metodologi yang digunakan meliputi pengumpulan data dari sensor IoT dan log aktifitas sebagai data, pra-pemrosesan data, serta pelatihan dan validasi model machine learning. Pada penelitian ini, deteksi dan identifikasi serangan menggunakan empat algoritma, yaitu K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), dan Decision Trees (DT). Hasil penelitian menunjukkan bahwa model Random Forest (RF) dan Decision Tree (DT) memiliki kinerja terbaik dalam mendeteksi serangan siber, dengan nilai True Positive (TP) yang tinggi dan tingkat kesalahan yang rendah. Evaluasi kinerja berdasarkan metrik Akurasi, Presisi, Recall, dan F1-Score mengonfirmasi bahwa RF dan DT mampu memberikan hasil yang akurat dan andal dalam mendeteksi ancaman. Model Random Forest menunjukkan Akurasi 98,4%, Presisi 98,4%, Recall 83,9%, dan F1-Score 90,5%, sedangkan Decision Tree menunjukkan Akurasi 98,1%, Presisi 90,5%, Recall 83,9%, dan F1-Score 87,1%. Implementasi model machine learning dalam sistem keamanan IoT dan edge computing terbukti tidak hanya meningkatkan keamanan data dan perangkat, tetapi juga memaksimalkan efisiensi operasional dengan kemampuan untuk mempelajari dan beradaptasi dengan pola serangan baru.

Article Details

How to Cite
Leny Margaretha Huizen, & Roy Rudolf Huizen. (2024). Optimalisasi Keamanan IoT dan Edge Computing Menggunakan Model Machine Learning. Jurnal Sistem Dan Informatika (JSI), 17(2), 89 - 94. https://doi.org/10.30864/jsi.v17i2.543
Section
Articles

References

K. Rastogi and D. Lohani, “IoT-based Indoor Occupancy Estimation Using Edge Computing,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 1943–1952. doi: 10.1016/j.procs.2020.04.208.
T. Takenaka, A. Ashima, and N. Nishino, “Strategies for evolving IoT-based Product-Service Systems from Emergent Synthesis Perspective,” Procedia CIRP, vol. 112, no. March, pp. 1–5, 2022, doi: 10.1016/j.procir.2022.09.014.
Veeramanikandan, S. Sankaranarayanan, J. J. P. C. Rodrigues, V. Sugumaran, and S. Kozlov, “Data Flow and Distributed Deep Neural Network based low latency IoT-Edge computation model for big data environment,” Eng Appl Artif Intell, vol. 94, Sep. 2020, doi: 10.1016/j.engappai.2020.103785.
Y. Yao, Z. Wang, and P. Zhou, “Privacy-preserving and energy efficient task offloading for collaborative mobile computing in IoT: An ADMM approach,” Comput Secur, vol. 96, Sep. 2020, doi: 10.1016/j.cose.2020.101886.
A. Alotaibi and A. Barnawi, “Securing massive IoT in 6G: Recent solutions, architectures, future directions,” Internet of Things (Netherlands), vol. 22, no. September 2022, p. 100715, 2023, doi: 10.1016/j.iot.2023.100715.
W. Huang, K. Ota, M. Dong, T. Wang, S. Zhang, and J. Zhang, “Result return aware offloading scheme in vehicular edge networks for IoT,” Comput Commun, vol. 164, pp. 201–214, Dec. 2020, doi: 10.1016/j.comcom.2020.10.019.
K. Sha, T. A. Yang, W. Wei, and S. Davari, “A survey of edge computing-based designs for IoT security,” Digital Communications and Networks, vol. 6, no. 2, pp. 195–202, May 2020, doi: 10.1016/j.dcan.2019.08.006.
C. M. Diaz, K. K. R. Choo, and A. Zunino, “Sharpening the edge: Towards improved edge computing environment for mobile and IoT applications,” Future Generation Computer Systems, vol. 107. Elsevier B.V., pp. 1130–1133, Jun. 01, 2020. doi: 10.1016/j.future.2019.06.017.
A. S. Nasution, A. Alvin, A. T. Siregar, and M. S. Sinaga, “KNN Algorithm for Identification of Tomato Disease Based on Image Segmentation Using Enhanced K-Means Clustering,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 4, no. 3, 2022, doi: 10.22219/kinetik.v7i3.1486.
H. Syahputra and A. Wibowo, “Comparison of Support Vector Machine (SVM) and Random Forest Algorithm for Detection of Negative Content on Websites,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 1, pp. 165–173, 2023, doi: 10.26555/jiteki.v9i1.25861.
D. A. Gustian, N. L. Rohmah, G. F. Shidik, A. Z. Fanani, R. A. Pramunendar, and Pujiono, “Classification of Troso Fabric Using SVM-RBF Multi-class Method with GLCM and PCA Feature Extraction,” Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, iSemantic 2019, pp. 7–11, 2019, doi: 10.1109/ISEMANTIC.2019.8884329.
Aditya Gumilar, Sri Suryani Prasetiyowati, and Yuliant Sibaroni, “Performance Analysis of Hybrid Machine Learning Methods on Imbalanced Data (Rainfall Classification),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 3, pp. 481–490, 2022, doi: 10.29207/resti.v6i3.4142.
Indexed and Journal List Title by: