Main Article Content

I Gusti Ayu Nandia Lestari
I Nyoman Dwi Arysna Mahendra

Article Details

How to Cite
I Gusti Ayu Nandia Lestari, & I Nyoman Dwi Arysna Mahendra. (2023). Prediksi Kualitas Udara dengan Menggunakan Metode Long Short-Term Memory dan Artificial Neural Network. Jurnal Sistem Dan Informatika (JSI), 17(2), 121 - 129. https://doi.org/10.30864/jsi.v17i2.565
Section
Articles

References

M. Thoriq Maulana, M. Hilmi Habibullah, Sunandar, N. Sholihah, M. Ainul Rifqi L. P., and F. Fahrudin, “Laporan Akhir: Kegiatan Pemantauan Kualitas Udara Provinsi DKI Jakarta Tahun 2022,” Pemerintah Provinsi Drh. Khusus Ibuk. Jakarta Dinas Lingkung. Hidup, vol. 1, no. 201310200311137, pp. 78–79, 2022.
A. Arkadia, B. Hananto, and D. S. Prasvita, “Optimasi Long Short Term Memory Dengan Adam Menggunakan Data Udara Kota DKI Jakarta,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., pp. 92–101, 2022.
N. Saurabh, “LSTM - RNN Model to Predict Future Stock Prices using an Efficient Optimizer,” Int. Res. J. Eng. Technol., vol. 7, no. 11, pp. 672–677, 2020.
Y. Jiao, Z. Wang, and Y. Zhang, “Prediction of Air Quality Index Based on LSTM,” in 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2019, pp. 17–20. doi: 10.1109/ITAIC.2019.8785602.
R. Janarthanan, P. Partheeban, K. Somasundaram, and P. Navin Elamparithi, “A deep learning approach for prediction of air quality index in a metropolitan city,” Sustain. Cities Soc., vol. 67, p. 102720, 2021, doi: https://doi.org/10.1016/j.scs.2021.102720.
D. L. Hidup, “Data Indeks Standar Pencemar Udara (ISPU) di Provinsi DKI Jakarta,” 2022, 2022. https://satudata.jakarta.go.id (accessed Jan. 01, 2022).
I. Nyoman, K. Wardana, N. Jawas, I. Komang, and A. A. Aryanto, “Prediksi Penggunaan Energi Listrik pada Rumah Hunian Menggunakan Long Short-Term Memory,” TIERS Inf. Technol. J., vol. 1, no. 1, pp. 1–11, 2020, [Online]. Available: http://journal.undiknas.ac.id/index.php/tiers
I. W. A. Suranata, I. N. K. Wardana, N. Jawas, and I. K. A. A. Aryanto, “Feature engineering and long short-term memory for energy use of appliances prediction,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 3, pp. 920–930, 2021, doi: 10.12928/TELKOMNIKA.v19i3.17882.
B. T. Pham, S. K. Singh, and H. B. Ly, “Using artificial neural network (Ann) for prediction of soil coefficient of consolidation,” Vietnam J. Earth Sci., vol. 42, no. 4, pp. 311–319, 2020, doi: 10.15625/0866-7187/42/4/15008.
Q. T. N. Phan, M. Mondal, and S. Kazushi, “Application of LSTM and ANN Models for Traffic Time Headway Prediction in Expressway Tollgates,” in 2022 Moratuwa Engineering Research Conference (MERCon), 2022, pp. 1–6. doi: 10.1109/MERCon55799.2022.9906226.
N. He, L. Liu, D. Chu, and C. Qian, “Air Conditioning Cooling Load Prediction Based on LSTM-ANN,” in 2022 5th International Symposium on Autonomous Systems (ISAS), 2022, pp. 1–6. doi: 10.1109/ISAS55863.2022.9757345.
I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Optimising deep learning at the edge for accurate hourly air quality prediction,” Sensors (Switzerland), vol. 21, no. 4, pp. 1–28, 2021, doi: 10.3390/s21041064.
T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci. Model Dev., vol. 15, no. 14, pp. 5481–5487, 2022, doi: 10.5194/gmd-15-5481-2022.
Indexed and Journal List Title by: