Main Article Content

Made Liandana
I Made Darma Susila

Abstract

Mendeteksi terjadinya jatuh sangat penting dilakukan karena jatuh dapat memberikan dampak yang serius bagi kesehatan. Salah satu perangkat sensor yang dapat digunakan untuk menyediakan data aktivitas jatuh adalah sensor accelerometer. Data sensor tersebut perlu diektraksi menjadi fitur dan diklasifikasi menggunakan algoritma machine learning. Selain itu, untuk memilah dan memilih fitur, dan mengetahui kombinasi fitur yang relevan diperlukan algoritma seleksi fitur. Pada penelitian ini, jatuh dideteksi berdasarkan data sensor accelerometer tiga sumbu (x, y, dan z), data yang digunakan merupakan data publik. Data diekstraksi menggunakan fungsi statistik yang terdiri dari: minimum, maksimum, rata-rata, nilai tengah, dan standar deviasi. Terdapat 15 fitur yang akan dievaluasi oleh algoritma machine learning. Algoritma machine learning yang digunakan adalah: k-Nearest Neighbors (KNN), Decision Tree (D-Tree), Random Forest (RF), Support Vector Machine (SVM), AdaBoost, dan Gradient Boosting. Untuk mengevaluasi jumlah fitur yang paling optimal pada algoritma machine learning, seleksi fitur yang digunakan adalah Analysis of Variance (ANOVA). Penggunaan fitur sebanyak 7, 8, 9, 10, dan 11  fitur menghasilkan performa machine learning yang paling optimal yang dicapai oleh machine learning: Decision Tree (D-Tree), Random Forest (RF), dan Gradient Boosting. Secara berturut-turut, ketiga classifier ini memiliki nilai accuracy, F-1, precision, recall, dan specificity adalah 1.000, 1.000, 1.000, 1.000, dan 1.000.

Article Details

How to Cite
Made Liandana, & I Made Darma Susila. (2023). Pengaruh Jumlah Fitur pada Algoritma Machine Learning dalam Memprediksi Aktivitas Jatuh. Jurnal Sistem Dan Informatika (JSI), 17(2), 109 - 120. https://doi.org/10.30864/jsi.v17i2.589
Section
Articles

References

J. Santiago, E. Cotto, L. G. Jaimes, and I. Vergara-Laurens, “Fall detection system for the elderly,” 2017 IEEE 7th Annual Computing and Communication Workshop and Conference, CCWC 2017, Mar. 2017.
R. Jain and V. B. Semwal, “A Novel Feature Extraction Method for Preimpact Fall Detection System Using Deep Learning and Wearable Sensors,” IEEE Sens J, vol. 22, no. 23, pp. 22943–22951, Dec. 2022.
Y. H. Nho, J. G. Lim, and D. S. Kwon, “Cluster-Analysis-Based User-Adaptive Fall Detection Using Fusion of Heart Rate Sensor and Accelerometer in a Wearable Device,” IEEE Access, vol. 8, pp. 40389–40401, 2020.
R. Jayakarthik, A. Srinivasan, S. Goswami, Shivaranjini, and R. Mahaveerakannan, “Fall Detection Scheme based on Deep Learning Model for High-Quality Life,” 3rd International Conference on Electronics and Sustainable Communication Systems, ICESC 2022 - Proceedings, pp. 1582–1588, 2022.
H. Ramirez, S. A. Velastin, I. Meza, E. Fabregas, D. Makris, and G. Farias, “Fall Detection and Activity Recognition Using Human Skeleton Features,” IEEE Access, vol. 9, pp. 33532–33542, 2021.
T. Althobaiti, S. Katsigiannis, and N. Ramzan, “Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning,” Sensors 2020, Vol. 20, Page 3777, vol. 20, no. 13, p. 3777, Jul. 2020.
L. M. Martins, N. F. Ribeiro, F. Soares, and C. P. Santos, “Inertial Data-Based AI Approaches for ADL and Fall Recognition,” Sensors 2022, Vol. 22, Page 4028, vol. 22, no. 11, p. 4028, May 2022.
H. Wang, J. Zhao, J. Li, L. Tian, P. Tu, T. Cao, Y. An, K. Wang, and S. Li, “Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques,” Security and Communication Networks, vol. 2020, 2020.
Z. Hussain, M. Sheng, and W. E. Zhang, “Different Approaches for Human Activity Recognition: A Survey,” Journal of Network and Computer Applications, vol. 167, Jun. 2019.
F. Serpush, M. B. Menhaj, B. Masoumi, and B. Karasfi, “Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System,” Comput Intell Neurosci, vol. 2022, 2022.
C. Vong, T. Theptit, V. Watcharakonpipat, P. Chanchotisatien, and S. Laitrakun, “Comparison of Feature Selection and Classification for Human Activity and Fall Recognition using Smartphone Sensors,” 2021 Joint 6th International Conference on Digital Arts, Media and Technology with 4th ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, ECTI DAMT and NCON 2021, pp. 170–173, Mar. 2021.
Z. He, K. Wang, Z. Zhao, T. Zhang, Y. Li, and L. Wang, “A Wearable Flexible Acceleration Sensor for Monitoring Human Motion,” Biosensors 2022, Vol. 12, Page 620, vol. 12, no. 8, p. 620, Aug. 2022.
S. Rastogi and J. Singh, “A systematic review on machine learning for fall detection system,” Comput Intell, vol. 37, no. 2, pp. 951–974, May 2021.
A. K. Alhazmi, M. A. Alanazi, C. Liu, and V. P. Chodavarapu, “Machine Learning Enabled Fall Detection with Compact Millimeter Wave System,” Proceedings of the IEEE National Aerospace Electronics Conference, NAECON, vol. 2021-August, pp. 217–222, 2021.
A. Choi, T. H. Kim, O. Yuhai, S. Jeong, K. Kim, H. Kim, and J. H. Mun, “Deep Learning-Based Near-Fall Detection Algorithm for Fall Risk Monitoring System Using a Single Inertial Measurement Unit,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2385–2394, 2022.
R. K. Hatkeposhti, M. Y. Tabari, and M. GolsorkhtabariAmiri, “Fall Detection using Deep Learning Algorithms and Analysis of Wearable Sensor Data by Presenting a New Sampling Method,” International Journal of Engineering, vol. 35, no. 10, pp. 1941–1958, Oct. 2022.
T. M. Le, V. T. Ly, and S. V. T. Dao, “A Feature Selection Approach for Fall Detection Using Various Machine Learning Classifiers,” IEEE Access, vol. 9, pp. 115895–115908, 2021.
C. A. Silva, R. García−Bermúdez, and E. Casilari, “Features Selection for Fall Detection Systems Based on Machine Learning and Accelerometer Signals,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12862 LNCS, pp. 380–391, 2021.
D. Kelly, J. Condell, J. Gillespie, K. Munoz Esquivel, J. Barton, S. Tedesco, A. Nordstrom, M. Åkerlund Larsson, and A. Alamäki, “Improved screening of fall risk using free-living based accelerometer data,” J Biomed Inform, vol. 131, p. 104116, Jul. 2022.
J. A. Santoyo-Ramón, E. Casilari-Pérez, and J. M. Cano-García, “Study of the Detection of Falls Using the SVM Algorithm, Different Datasets of Movements and ANOVA,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11465 LNBI, pp. 415–428, 2019.
J. Silva, D. Gomes, I. Sousa, and J. S. Cardoso, “Automated Development of Custom Fall Detectors: Position, Model and Rate Impact in Performance,” IEEE Sens J, vol. 20, no. 10, pp. 5465–5472, May 2020.
V. Cotechini, A. Belli, L. Palma, M. Morettini, L. Burattini, and P. Pierleoni, “A dataset for the development and optimization of fall detection algorithms based on wearable sensors,” Data Brief, vol. 23, p. 103839, Apr. 2019.
Indexed and Journal List Title by: