Main Article Content

Florentina Tatrin Kurniati
Dian Pramana

Abstract

Penelitian ini berfokus untuk identifikasi objek dengan latar belakang yang komplek, pendekatan kombinasi multi fitur menggunakan algoritma deteksi tepi (Sobel, Canny, dan Robert) dan Local Binary Pattern (LBP) serta klasifikasi menggunakan Random Forest. Tahapan penelitian ini meliputi pengumpulan data, pra-pemrosesan, ekstraksi ciri, dan evaluasi kinerja. Metrik untuk evaluasi kinerja menghitung akurasi, presisi, recall, dan F1-Score. Berdasarkan pengujian hasil yang diperoleh menunjukkan peningkatan yang signifikan dalam kinerja identifikasi objek. Hasilnya untuk akurasi mencapai 93%, presisi 96%, recall 91%, dan F1-Score 94%. Pengujian metode tersebut menunjukkan bahwa integrasi multi fitur mempengaruhi signifikan peningkatan keakuratan dan keandalan identifikasi objek, terutama dalam menghadapi tantangan latar belakang yang beragam dan kondisi pencahayaan yang tidak stabil.

Article Details

How to Cite
Florentina Tatrin Kurniati, & Dian Pramana. (2023). Identifikasi Objek Menggunakan Random Forest dan Multi-Fitur. Jurnal Sistem Dan Informatika (JSI), 17(2), 130 - 136. https://doi.org/10.30864/jsi.v17i2.590
Section
Articles

References

Z. Pan, S. Hu, X. Wu, and P. Wang, “Adaptive center pixel selection strategy in Local Binary Pattern for texture classification,” Expert Syst Appl, vol. 180, Oct. 2021, doi: 10.1016/j.eswa.2021.115123.
U. A. Nnolim, “Automated crack segmentation via saturation channel thresholding, area classification and fusion of modified level set segmentation with Canny edge detection,” Heliyon, vol. 6, no. 12, Dec. 2020, doi: 10.1016/j.heliyon.2020.e05748.
T. Song, L. Xin, C. Gao, T. Zhang, and Y. Huang, “Quaternionic extended local binary pattern with adaptive structural pyramid pooling for color image representation,” Pattern Recognit, vol. 115, Jul. 2021, doi: 10.1016/j.patcog.2021.107891.
N. S. Dagar and P. K. Dahiya, “Edge Detection Technique using Binary Particle Swarm Optimization,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 1421–1436. doi: 10.1016/j.procs.2020.03.353.
E. R. Mehmet Bilal, “Heart sounds classification using convolutional neural network with 1D-local binary pattern and 1D-local ternary pattern features,” Applied Acoustics, vol. 180, Sep. 2021, doi: 10.1016/j.apacoust.2021.108152.
H. Yin, Y. Chen, J. Xiong, R. Xia, J. Xie, and K. Yang, “An improved local binary pattern method for pollen image classification and recognition,” Computers and Electrical Engineering, vol. 90, Mar. 2021, doi: 10.1016/j.compeleceng.2021.106983.
H. Tao and X. Lu, “Smoke vehicle detection based on robust codebook model and robust volume local binary count patterns,” Image Vis Comput, vol. 86, pp. 17–27, Jun. 2019, doi: 10.1016/j.imavis.2019.03.008.
W. Yin, W. Zhao, D. You, and D. Wang, “Local binary pattern metric-based multi-focus image fusion,” Opt Laser Technol, vol. 110, pp. 62–68, Feb. 2019, doi: 10.1016/j.optlastec.2018.07.045.
J. Pirneskoski et al., “Random forest machine learning method outperforms prehospital National Early Warning Score for predicting one-day mortality: A retrospective study,” Resusc Plus, vol. 4, Dec. 2020, doi: 10.1016/j.resplu.2020.100046.
J. Jing, S. Liu, G. Wang, W. Zhang, and C. Sun, “Recent advances on image edge detection: A comprehensive review,” Neurocomputing, vol. 503, pp. 259–271, Sep. 2022, doi: 10.1016/j.neucom.2022.06.083.
Indexed and Journal List Title by: