Optimalisasi Ekstraksi Fitur dan Klasifikasi untuk Deteksi Objek di IoT
Main Article Content
Abstract
Penelitian ini bertujuan untuk meningkatkan efektivitas deteksi objek pada sistem Internet of Things (IoT) melalui optimalisasi metode ekstraksi fitur dan klasifikasi. Mengetahui kompleksitas algoritma pada sistem deteksi objek merupakan strategi untuk optimasi pada sistem IOT. Metode ekstraksi fitur yang digunakan adalah Gray Level Co-occurrence Matrix (GLCM), dengan fitur tekstur seperti kontras, homogenitas, energi, dan entropi dari suatu objek gambar. Untuk metode klasifikasi yang dikombinasikan dengan GLCM meliputi K-Nearest Neighbors (K-NN), Support Vector Machines (SVM), Decision Trees, dan Neural Networks. Dari hasil pengujian waktu eksekusi berbagai algoritma klasifikasi seperti K-NN, SVM, Decision Trees, dan Neural Networks, terlihat perbedaan yang signifikan dalam efisiensi dan skalabilitas masing-masing algoritma. SVM menunjukkan waktu eksekusi tertinggi dengan pertumbuhan eksponensial (O(n^3)), sehingga kurang efisien dan kurang sesuai untuk dataset yang sangat besar. Untuk K-NN memiliki kompleksitas waktu eksekusi yang linear dalam faktor k (O(nk)), namun masih terdapat peningkatan secara signifikan dengan bertambahnya jumlah data. Decision Trees, dengan kompleksitas log-linear (O(n log n)), menunjukkan keseimbangan yang baik antara efisiensi dan skalabilitas, sehingga model ini sesuai untuk dataset yang lebih besar dibandingkan SVM dan K-NN. Neural Networks menunjukkan sebagai algoritma yang efisien dengan pertumbuhan waktu eksekusi yang paling lambat (O(n)), sehingga model tersebut sesuai untuk dataset besar.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Sistem dan Informatika (JSI) bersifat open access, yaitu dapat diakses secara umum tanpa dikenakan biaya. Penulis yang menerbitkan artikelnya di JSI setuju dengan ketentuan berikut:- JSI menggunakan perjanjian lisensi ekslusif, yaitu penulis memegang hak cipta atas artikel dan memberikan hak publikasi kepada Jurnal Sistem dan Informatika (JSI).
- JSI mempunyai hak ekslusif untuk mempublikasi dan mendistribusikan artikel secara sebagian atau keseluruhan, dan memberikan hak kepada orang lain sesuai dengan lisensi yang digunakan.
- JSI berhak untuk menyediakan artikel dalam berbagai bentuk dan media, sehingga artikel dapat digunakan untuk teknologi terbaru bahkan setelah dipublikasikan.
- JSI berhak untuk menegakkan hak-hak atas nama penulis pada artikel terhadap pihak ketiga. Misalnya dalam kasus plagiarisme atau pelanggaran hak cipta.
- Artikel harus dirujuk, link terhadap lisensi harus disediakan, dan jika terdapat bagian artikel yang diubah harus ditandai.
- Jika artikel disadur sehingga terdapat perubahan, hasil saduran harus didistribusikan menggunakan lisensi yang sama.
- Tidak diperkenankan untuk membatasi orang lain terhadap apa yang diperbolehkan oleh lisensi.
References
S. Pandiyan, M. Ashwin, R. Manikandan, K. M. Karthick Raghunath, and G. R. Anantha Raman, “Heterogeneous Internet of things organization Predictive Analysis Platform for Apple Leaf Diseases Recognition,” Comput Commun, vol. 154, pp. 99–110, Mar. 2020, doi: 10.1016/j.comcom.2020.02.054.
S. Dargan and M. Kumar, “A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities,” Expert Systems with Applications, vol. 143. Elsevier Ltd, Apr. 01, 2020. doi: 10.1016/j.eswa.2019.113114.
P. Zeng, B. Pan, K. K. R. Choo, and H. Liu, “MMDA: Multidimensional and multidirectional data aggregation for edge computing-enhanced IoT,” Journal of Systems Architecture, vol. 106, Jun. 2020, doi: 10.1016/j.sysarc.2020.101713.
K. Sha, T. A. Yang, W. Wei, and S. Davari, “A survey of edge computing-based designs for IoT security,” Digital Communications and Networks, vol. 6, no. 2, pp. 195–202, May 2020, doi: 10.1016/j.dcan.2019.08.006.
F. T. Kurniati and R. R. Huizen, “Verifikasi Dokumen Cetak Menggunakan Metode Edge Detection-Glcm Dan K-Mean Clustering,” Dinamik, vol. 25, no. 2, pp. 85–93, 2020, doi: 10.35315/dinamik.v25i2.8188.
G. Liu, J. Han, and W. Rong, “Feedback-driven loss function for small object detection,” Image Vis Comput, vol. 111, Jul. 2021, doi: 10.1016/j.imavis.2021.104197.
C. I. Ossai and N. Wickramasinghe, “GLCM and statistical features extraction technique with Extra-Tree Classifier in Macular Oedema risk diagnosis,” Biomed Signal Process Control, vol. 73, no. November 2021, p. 103471, 2022, doi: 10.1016/j.bspc.2021.103471.
S. Agrippina and A. Yusuf, “MFCC Feature Extraction and KNN Classification in ECG Signals,” 2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), pp. 1–5, 2019.
D. A. Gustian, N. L. Rohmah, G. F. Shidik, A. Z. Fanani, R. A. Pramunendar, and Pujiono, “Classification of Troso Fabric Using SVM-RBF Multi-class Method with GLCM and PCA Feature Extraction,” Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, iSemantic 2019, pp. 7–11, 2019, doi: 10.1109/ISEMANTIC.2019.8884329.
A. Gregoriades, M. Pampaka, H. Herodotou, and E. Christodoulou, “Supporting digital content marketing and messaging through topic modelling and decision trees,” Expert Syst Appl, vol. 184, no. August 2020, p. 115546, 2021, doi: 10.1016/j.eswa.2021.115546.
Y. Yao, Z. Wang, and P. Zhou, “Privacy-preserving and energy efficient task offloading for collaborative mobile computing in IoT: An ADMM approach,” Comput Secur, vol. 96, Sep. 2020, doi: 10.1016/j.cose.2020.101886.
Y. li Liu, L. Huang, W. Yan, X. Wang, and R. Zhang, “Privacy in AI and the IoT: The privacy concerns of smart speaker users and the Personal Information Protection Law in China,” Telecomm Policy, vol. 46, no. 7, p. 102334, 2022, doi: 10.1016/j.telpol.2022.102334.
V. Zaza, M. Bisceglie, S. Valerio, and I. Giannoccaro, “The effect of complexity on the resilience and efficiency of integrated healthcare systems: the moderating role of big data analytics,” IFAC-PapersOnLine, vol. 55, no. 10, pp. 2857–2862, 2022, doi: 10.1016/j.ifacol.2022.10.164.
A. S. Nasution, A. Alvin, A. T. Siregar, and M. S. Sinaga, “KNN Algorithm for Identification of Tomato Disease Based on Image Segmentation Using Enhanced K-Means Clustering,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 4, no. 3, 2022, doi: 10.22219/kinetik.v7i3.1486.
S. Salem Ghahfarrokhi and H. Khodadadi, “Human brain tumor diagnosis using the combination of the complexity measures and texture features through magnetic resonance image,” Biomed Signal Process Control, vol. 61, p. 102025, 2020, doi: 10.1016/j.bspc.2020.102025.