Main Article Content

I Wayan Aditya Suranata

Abstract

Perubahan iklim menjadi isu penting yang perlu dicermati karena memengaruhi berbagai sektor, termasuk pertanian yang sangat bergantung pada curah hujan karena menentukan jadwal tanam dan panen. Oleh karena itu, penelitian ini mengembangkan model prediksi curah hujan menggunakan metode Long Short-Term Memory (LSTM) dan Gated Recurrent Units (GRU). Data yang digunakan dalam pembuatan model diperoleh dari Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) dan diukur selama satu tahun pada 2019. Dataset terdiri dari 10 atribut yang digunakan sebagai acuan pengukuran cuaca oleh BMKG. Kemudian data tersebut dianalisis untuk memperbaiki nilai yang hilang dan melakukan pelabelan untuk menyamakan tipe data. Dari 10 atribut, hanya 7 atribut yang digunakan dalam proses pemodelan. Hasil pemodelan menunjukkan bahwa metode LSTM menghasilkan nilai RMSE sebesar 8,853, MAE sebesar 4,090, dan MSE sebesar 78,383, sedangkan metode GRU menghasilkan nilai RMSE sebesar 9,698, MAE sebesar 4,291, dan MSE sebesar 94,058. Berdasarkan hasil ini, metode LSTM memiliki tingkat error yang lebih rendah dibandingkan GRU dalam memprediksi curah hujan. Penelitian ini diharapkan dapat memberikan kontribusi pada bidang meteorologi dalam memprediksi curah hujan serta berperan dalam penanganan perubahan iklim di masa depan.

Article Details

How to Cite
Suranata, I. W. A. (2023). Pengembangan Model Prediksi Curah Hujan di Kota Denpasar Menggunakan Metode LSTM dan GRU. Jurnal Sistem Dan Informatika (JSI), 18(1), 64-73. https://doi.org/10.30864/jsi.v18i1.603
Section
Articles

References

I. Salehin, I. M. Talha, M. Mehedi Hasan, S. T. Dip, M. Saifuzzaman, and N. N. Moon, “An Artificial Intelligence Based Rainfall Prediction Using LSTM and Neural Network,” in 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), 2020, pp. 5–8. doi: 10.1109/WIECON-ECE52138.2020.9398022.
F. Manokij, K. Sarinnapakorn, and P. Vateekul, “Forecasting Thailand’s Precipitation with Cascading Model of CNN and GRU,” in 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE), 2019, pp. 1–6. doi: 10.1109/ICITEED.2019.8929975.
W. Liu, G. Zhuang, X. Liu, S. Hu, R. He, and Y. Wang, “How do we move towards true artificial intelligence,” in 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), 2021, pp. 2156–2158. doi: 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00321.
V. B. Kumar, V. M. Nookesh, B. S. Saketh, S. Syama, and J. Ramprabhakar, “Wind Speed Prediction Using Deep Learning-LSTM and GRU,” in 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), 2021, pp. 602–607. doi: 10.1109/ICOSEC51865.2021.9591886.
K. P. Rasheed Abdul Haq and V. P. Harigovindan, “Water Quality Prediction for Smart Aquaculture Using Hybrid Deep Learning Models,” IEEE Access, vol. 10, pp. 60078–60098, 2022, doi: 10.1109/ACCESS.2022.3180482.
K. Purwandari, J. W. C. Sigalingging, M. Putri, and M. A. Kusuma, “The Indonesian Surface Weather Observation Monitoring System for Data Availability,” in 2022 International Conference on Information Management and Technology (ICIMTech), 2022, pp. 207–212. doi: 10.1109/ICIMTech55957.2022.9915178.
BMKG, “Badan Meteorologi, Klimatologi, dan Geofisika.” https://www.bmkg.go.id/
A. K. Tripathi, H. Saini, and G. Rathee, “Missing Values Imputation in Food Consumption: An Analytical Study,” in 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), 2021, pp. 303–307. doi: 10.1109/ISPCC53510.2021.9609371.
S. Z. Christopher, T. Siswantining, D. Sarwinda, and A. Bustaman, “Missing Value Analysis of Numerical Data using Fractional Hot Deck Imputation,” in 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), 2019, pp. 1–6. doi: 10.1109/ICICoS48119.2019.8982412.
I. N. K. Wardana, J. W. Gardner, and S. A. Fahmy, “Optimising Deep Learning at the Edge for Accurate Hourly Air Quality Prediction,” Sensors, vol. 21, no. 4, 2021, doi: 10.3390/s21041064.
I. W. A. Suranata, I. N. K. Wardana, N. Jawas, and I. K. A. A. Aryanto, “Feature engineering and long short-term memory for energy use of appliances prediction,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 3, pp. 920–930, 2021, doi: 10.12928/TELKOMNIKA.v19i3.17882.
I. Nyoman, K. Wardana, N. Jawas, I. Komang, and A. A. Aryanto, “Prediksi Penggunaan Energi Listrik pada Rumah Hunian Menggunakan Long Short-Term Memory,” TIERS Inf. Technol. J., vol. 1, no. 1, pp. 1–11, 2020, [Online]. Available: http://journal.undiknas.ac.id/index.php/tiers
J. R. Ban, Q. Gou, and Y. S. Li, “Study on Rainfall Prediction of Yibin City Based on GRU and XGBoost,” in 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), 2022, pp. 1–5. doi: 10.1109/CTISC54888.2022.9849730.
H. F. Nurrohman, D. C. R. Novitasari, F. Setiawan, Rochimah, A. Taufiq, and A. Hamid, “Rainfall Prediction Using Gated Recurrent Unit Based on DMI and Nino3.4 Index,” in 2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), 2022, pp. 191–196. doi: 10.1109/IAICT55358.2022.9887474.
T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci. Model Dev., vol. 15, no. 14, pp. 5481–5487, 2022, doi: 10.5194/gmd-15-5481-2022.
A. Lawal, S. Rehman, L. M. Alhems, and M. M. Alam, “Wind Speed Prediction Using Hybrid 1D CNN and BLSTM Network,” IEEE Access, vol. 9, pp. 156672–156679, 2021, doi: 10.1109/ACCESS.2021.3129883.
Indexed and Journal List Title by: