Pengenalan Aktivitas Manusia dengan Seleksi Fitur Analysis of Variance (ANOVA) dan Mutual Information (MI) pada Data Sensor Accelerometer Berbasis Machine Learning
Main Article Content
Abstract
Pengenalan aktivitas manusia telah banyak dikembangkan untuk berbagai keperluan, seperti kesehatan, olahraga, hingga pengawasan lanjut usia. Penggunaan perangkat sensor menjadi salah satu pilihan dalam melakukan pengenalan aktivitas manusia. Sensor accelerometer adalah salah satu perangkat yang umum digunakan dalam pengenalan aktivitas. Data sensor ini memerlukan teknik dan algoritma yang tepat sehingga menghasilkan hasil pengenalan aktivitas yang sesuai. Penggunaan tradisional machine learning menjadi salah satu teknik yang dapat digunakan, teknik ini memerlukan proses ekstraksi fitur, dan seleksi fitur. Teknik seleksi fitur mana dan berapa jumlah fitur yang tepat untuk mendapatkan performa machine learning yang optimal perlu dilakukan investigasi lebih lanjut. Pada penelitian ini, dilakukan evaluasi terhadap kombinasi sejumlah fitur menggunakan algoritma machine learning: Extreme Gradient Boosting (XGB), Gradient Boosting (GBoost), Random Forest (RF), Decision Tree (DT), dan Support Vector Machine (SVM. Dataset publik yang digunakan yaitu FORTH-TRACE. Sensor yang digunakan adalah sensor accelerometer. Fitur yang digunakan meliputi nilai minimum, nilai maksimum, nilai rata-rata, nilai tengah, standar deviasi, dan nilai interkuartil. Sedangkan seleksi fitur yang digunakan adalah Analysis of Variance (ANOVA) dan Mutual Information (MI). Performa machine learning yang paling optimal ketika jumlah fitur 17 sampai dengan 18 fitur dengan akurasi 0,875, sedangkan performa machine learning paling optimal dicapai dengan menggunakan Extreme Gradient Boosting (XGB).
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Sistem dan Informatika (JSI) bersifat open access, yaitu dapat diakses secara umum tanpa dikenakan biaya. Penulis yang menerbitkan artikelnya di JSI setuju dengan ketentuan berikut:- JSI menggunakan perjanjian lisensi ekslusif, yaitu penulis memegang hak cipta atas artikel dan memberikan hak publikasi kepada Jurnal Sistem dan Informatika (JSI).
- JSI mempunyai hak ekslusif untuk mempublikasi dan mendistribusikan artikel secara sebagian atau keseluruhan, dan memberikan hak kepada orang lain sesuai dengan lisensi yang digunakan.
- JSI berhak untuk menyediakan artikel dalam berbagai bentuk dan media, sehingga artikel dapat digunakan untuk teknologi terbaru bahkan setelah dipublikasikan.
- JSI berhak untuk menegakkan hak-hak atas nama penulis pada artikel terhadap pihak ketiga. Misalnya dalam kasus plagiarisme atau pelanggaran hak cipta.
- Artikel harus dirujuk, link terhadap lisensi harus disediakan, dan jika terdapat bagian artikel yang diubah harus ditandai.
- Jika artikel disadur sehingga terdapat perubahan, hasil saduran harus didistribusikan menggunakan lisensi yang sama.
- Tidak diperkenankan untuk membatasi orang lain terhadap apa yang diperbolehkan oleh lisensi.
References
M. Tabish, Z. ur R. Tanooli, and M. Shaheen, “Activity recognition framework in sports videos,” Multimed Tools Appl, pp. 1–23, Feb. 2021.
A. Hussain, T. Hussain, W. Ullah, and S. W. Baik, “Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos,” Comput Intell Neurosci, vol. 2022, pp. 1–10, Apr. 2022.
A. M. A. Baraka and M. H. Mohd Noor, “Similarity Segmentation Approach for Sensor-Based Activity Recognition,” IEEE Sens J, vol. 23, no. 17, pp. 19704–19716, Sep. 2023.
M. Munoz-Organero, I. D. Luptáková, M. Kubovčík, and J. Pospíchal, “Wearable Sensor-Based Human Activity Recognition with Transformer Model,” Sensors 2022, Vol. 22, Page 1911, vol. 22, no. 5, p. 1911, Mar. 2022.
F. Rustam, A. A. Reshi, I. Ashraf, A. Mehmood, S. Ullah, D. M. Khan, and G. S. Choi, “Sensor-Based Human Activity Recognition Using Deep Stacked Multilayered Perceptron Model,” IEEE Access, vol. 8, pp. 218898–218910, 2020.
F. Serpush, M. B. Menhaj, B. Masoumi, and B. Karasfi, “Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System,” Comput Intell Neurosci, vol. 2022, 2022.
H. Wang, J. Zhao, J. Li, L. Tian, P. Tu, T. Cao, Y. An, K. Wang, and S. Li, “Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques,” Security and Communication Networks, vol. 2020, 2020.
F. Serpush, M. B. Menhaj, B. Masoumi, and B. Karasfi, “Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System,” Comput Intell Neurosci, vol. 2022, 2022.
H. Wang, J. Zhao, J. Li, L. Tian, P. Tu, T. Cao, Y. An, K. Wang, and S. Li, “Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques,” Security and Communication Networks, vol. 2020, 2020.
A. B. Mesanza, S. Lucas, A. Zubizarreta, I. Cabanes, E. Portillo, and A. Rodriguez-Larrad, “A Machine Learning Approach to Perform Physical Activity Classification Using a Sensorized Crutch Tip,” IEEE Access, vol. 8, pp. 210023–210034, 2020.
R. A. Voicu, C. Dobre, L. Bajenaru, and R. I. Ciobanu, “Human Physical Activity Recognition Using Smartphone Sensors,” Sensors (Basel), vol. 19, no. 3, Feb. 2019.
J. Zhu, W. Wang, S. Huang, and W. Ding, “An Improved Calibration Technique for MEMS Accelerometer-Based Inclinometers,” Sensors 2020, Vol. 20, Page 452, vol. 20, no. 2, p. 452, Jan. 2020.
J. Lu and K. Y. Tong, “Robust Single Accelerometer-Based Activity Recognition Using Modified Recurrence Plot,” IEEE Sens J, vol. 19, no. 15, pp. 6317–6324, Aug. 2019.
T. Althobaiti, S. Katsigiannis, and N. Ramzan, “Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning,” Sensors 2020, Vol. 20, Page 3777, vol. 20, no. 13, p. 3777, Jul. 2020.
E. Fridriksdottir and A. G. Bonomi, “Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network,” Sensors 2020, Vol. 20, Page 6424, vol. 20, no. 22, p. 6424, Nov. 2020.
E. Fortune, V. Lugade, S. Amin, and K. R. Kaufman, “Step detection using multi- versus single tri-axial accelerometer-based systems,” Physiol Meas, vol. 36, no. 12, pp. 2519–2535, Nov. 2015.
E. Al-Mahadeen, M. Alghamdi, A. S. Tarawneh, M. A. Alrowaily, M. Alrashidi, I. S. Alkhazi, A. Mbaidin, A. A. Alkasasbeh, M. A. Abbadi, and A. B. Hassanat, “Smartphone User Identification/Authentication Using Accelerometer and Gyroscope Data,” Sustainability 2023, Vol. 15, Page 10456, vol. 15, no. 13, p. 10456, Jul. 2023.
W. M. Niu, F. Li-Qing, Z. Y. Qi, and D. Q. Guo, “Small Displacement Measuring System Based on MEMS Accelerometer,” Math Probl Eng, vol. 2019, 2019.
F. Taffoni, D. Rivera, A. La Camera, A. Nicolò, J. R. Velasco, and C. Massaroni, “A Wearable System for Real-Time Continuous Monitoring of Physical Activity,” J Healthc Eng, vol. 2018, pp. 1–16, Mar. 2018.
B. McDevitt, J. Connolly, D. Duddy, R. Doherty, and J. Condell, “Preliminary Investigations of the Validity and Interinstrument Reliability for Classification of Accelerometer Physical Activity Cut-Points Against Indirect Caliometry in Healthy Adults,” 2022 33rd Irish Signals and Systems Conference, ISSC 2022, 2022.
G. I. Mielke, M. de Almeida Mendes, U. Ekelund, A. V. Rowlands, F. F. Reichert, and I. Crochemore-Silva, “Absolute intensity thresholds for tri-axial wrist and waist accelerometer-measured movement behaviors in adults,” Scand J Med Sci Sports, vol. 33, no. 9, pp. 1752–1764, Sep. 2023.
B. Vidya and S. P, “Wearable multi-sensor data fusion approach for human activity recognition using machine learning algorithms,” Sens Actuators A Phys, vol. 341, p. 113557, Jul. 2022.
W. Xiao and Y. Lu, “Daily Human Physical Activity Recognition Based on Kernel Discriminant Analysis and Extreme Learning Machine,” Math Probl Eng, vol. 2015, p. 8, 2015.
B. Nguyen, Y. Coelho, T. Bastos, and S. Krishnan, “Trends in human activity recognition with focus on machine learning and power requirements,” Machine Learning with Applications, vol. 5, p. 100072, Sep. 2021.
A. K. Alhazmi, M. A. Alanazi, C. Liu, and V. P. Chodavarapu, “Machine Learning Enabled Fall Detection with Compact Millimeter Wave System,” Proceedings of the IEEE National Aerospace Electronics Conference, NAECON, vol. 2021-August, pp. 217–222, 2021.
S. Mohsen, A. Elkaseer, and S. G. Scholz, “Human Activity Recognition Using K-Nearest Neighbor Machine Learning Algorithm,” Smart Innovation, Systems and Technologies, vol. 262 SIST, pp. 304–313, 2022.
H. Son, J. W. Lim, S. Park, B. Park, J. Han, H. B. Kim, M. C. Lee, K. J. Jang, G. Kim, and J. H. Chung, “A Machine Learning Approach for the Classification of Falls and Activities of Daily Living in Agricultural Workers,” IEEE Access, vol. 10, pp. 77418–77431, 2022.
G. Gao, Z. Li, Z. Huan, Y. Chen, J. Liang, B. Zhou, and C. Dong, “Human Behavior Recognition Model Based on Feature and Classifier Selection,” Sensors (Basel), vol. 21, no. 23, Dec. 2021.
F. M. Noori, M. Riegler, M. Z. Uddin, and J. Torresen, “Human Activity Recognition from Multiple Sensors Data Using Multi-fusion Representations and CNNs,” ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 16, no. 2, May 2020.
H. Hegazy, M. Abdelsalam, M. Hussien, S. Elmosalamy, Y. Hassan, A. Nabil, and A. Atia, “Multi-Sensor Fusion for Online Detection and Classification of Table Tennis Strokes,” International Journal of Intelligent Engineering and Systems, vol. 14, no. 2, p. 2021.
Y. H. Nho, J. G. Lim, and D. S. Kwon, “Cluster-Analysis-Based User-Adaptive Fall Detection Using Fusion of Heart Rate Sensor and Accelerometer in a Wearable Device,” IEEE Access, vol. 8, pp. 40389–40401, 2020.
S. S. Bangaru, C. Wang, S. A. Busam, and F. Aghazadeh, “ANN-based automated scaffold builder activity recognition through wearable EMG and IMU sensors,” Autom Constr, vol. 126, p. 103653, Jun. 2021.
G. Tripathy and A. Sharaff, “AEGA: enhanced feature selection based on ANOVA and extended genetic algorithm for online customer review analysis,” Journal of Supercomputing, vol. 79, no. 12, pp. 13180–13209, Aug. 2023.
C. Vong, T. Theptit, V. Watcharakonpipat, P. Chanchotisatien, and S. Laitrakun, “Comparison of Feature Selection and Classification for Human Activity and Fall Recognition using Smartphone Sensors,” 2021 Joint 6th International Conference on Digital Arts, Media and Technology with 4th ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, ECTI DAMT and NCON 2021, pp. 170–173, Mar. 2021.
K. Karagiannaki, A. Panousopoulou, and P. Tsakalides, “A benchmark study on feature selection for human activity recognition,” UbiComp 2016 Adjunct - Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 105–108, Sep. 2016.