Main Article Content

Gede Angga Pradipta
Putu Desiana Wulaning Ayu

Abstract

Deteksi dini terhadap gangguan spektrum autisme (ASD) pada anak sangat penting untuk memberikan intervensi dan terapi tepat waktu. Deteksi dini secara tepat dapat membantu meningkatkan kualitas hidup anak yang terindikasi ASD. Metode pendekatan deteksi dapat dilakukan dengan observasi klinis dan kuesioner psikologi, tetapi metode ini sering kali subjektif dan membutuhkan waktu dalam mengetahui hasilnya. Sehingga dengan melihat permasalahan yang ada, maka penelitian ini bertujuan bertujuan untuk mengembangkan dan mengevaluasi model klasifikasi berbasis multi-klasifikasi dan metode seleksi serta jumlah fitur pada citra wajah untuk mendeteksi secara dini pada ASD. Hasil pengujian menunjukkan perpaduan metode klasifikasi logistik regresi dengan seleksi fitur ANOVA dengan menggunakan 150 fitur menghasilkan performansi terbaik dari sisi akurasi sebesar 0.9688, presisi sebesar 0.9687, dan recall sebesar 0.9688, dibandingkan dengan penggunaan metode seleksi fitur Information Gain. Hasil pengujian menunjukkan metode Logistic Linear Regression memiliki keunggulan dalam melakukan klasifikasi pada kelas biner dengan fitur yang terbatas.

Article Details

How to Cite
Pradipta, G. A., & Putu Desiana Wulaning Ayu. (2024). Performansi Seleksi Fitur pada Metode Multi Klasifikasi untuk Deteksi Dini Autisme Berbasis Citra Wajah Anak. Jurnal Sistem Dan Informatika (JSI), 18(2), 167-176. https://doi.org/10.30864/jsi.v18i2.611
Section
Articles

References

P. Mazumdar, G. Arru, and F. Battisti, “Early detection of children with Autism Spectrum Disorder based on visual exploration of images,” Signal Process Image Commun, vol. 94, no. February, p. 116184, 2021, doi: 10.1016/j.image.2021.116184.
M. Z. Uddin, M. A. Shahriar, M. N. Mahamood, F. Alnajjar, M. I. Pramanik, and M. A. R. Ahad, “Deep learning with image-based autism spectrum disorder analysis: A systematic review,” Eng Appl Artif Intell, vol. 127, no. PA, p. 107185, 2024, doi: 10.1016/j.engappai.2023.107185.
A. V. Shinde and D. D. Patil, “A Multi-Classifier-Based Recommender System for Early Autism Spectrum Disorder Detection using Machine Learning,” Healthcare Analytics, vol. 4, no. April, p. 100211, 2023, doi: 10.1016/j.health.2023.100211.
M. S. Farooq, R. Tehseen, M. Sabir, and Z. Atal, “Detection of autism spectrum disorder (ASD) in children and adults using machine learning,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-35910-1.
P. W. Rudnicki W.R., Wrzesień M., Feature selection for data and pattern classification. 2013.
A. A. Z. I. Delowar Hossain Muhammad Ashad Kabir, “Detecting autism spectrum disorder using machine learning techniques: An experimental analysis on toddler, child, adolescent and adult datasets.,” vol. 9, no. 1. Springer. doi: 10.1007/S13755-021-00145-9.
A. Novianto and M. D. Anasanti, “Autism Spectrum Disorder (ASD) Identification Using Feature-Based Machine Learning Classification Model,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 17, no. 3, p. 259, Jul. 2023, doi: 10.22146/ijccs.83585.
A. V. Shinde and D. D. Patil, “A Multi-Classifier-Based Recommender System for Early Autism Spectrum Disorder Detection using Machine Learning,” Healthcare Analytics, vol. 4, Dec. 2023, doi: 10.1016/j.health.2023.100211.
I. Ahmad, J. Rashid, M. Faheem, A. Akram, N. A. Khan, and R. ul Amin, “Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional neural networks,” Healthc Technol Lett, no. January, 2024, doi: 10.1049/htl2.12073.
T. M. Ghazal, S. Munir, S. Abbas, A. Athar, H. Alrababah, and M. A. Khan, “Early Detection of Autism in Children Using Transfer Learning,” Intelligent Automation and Soft Computing, vol. 36, no. 1, pp. 11–22, 2023, doi: 10.32604/iasc.2023.030125.
A. S. Ali Abdullah Yaser Issam Aljanabi, “Developing a convolutional neural network for classifying tumor images using Inception v3,” vol. 3, no. 9 (123). doi: 10.15587/1729-4061.2023.281227.
M. Martin, T. Nguyen, S. Yousefi, and B. Li, “Comprehensive features with randomized decision forests for hand segmentation from color images in uncontrolled indoor scenarios,” Multimed Tools Appl, vol. 78, no. 15, pp. 20987–21020, 2019, doi: 10.1007/s11042-019-7445-3.
P. Annangi, S. Frigstad, S. B. Subin, A. Torp, S. Ramasubramaniam, and S. Varna, “An automated bladder volume measurement algorithm by pixel classification using random forests,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016, GE Global Research, United States: Institute of Electrical and Electronics Engineers Inc., 2016, pp. 4121–4124. doi: 10.1109/EMBC.2016.7591633.
K. Vijayalakshmi, M. Vinayakamurthy, and Anuradha, “A Hybrid Recommender System using MultiClassifier Regression Model for Autism Detection,” in 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), 2020, pp. 139–144. doi: 10.1109/ICSTCEE49637.2020.9277034.
T. Akter, M. I. Khan, M. H. Ali, M. S. Satu, M. J. Uddin, and M. A. Moni, “Improved Machine Learning based Classification Model for Early Autism Detection,” International Conference on Robotics, Electrical and Signal Processing Techniques, pp. 742–747, 2021, doi: 10.1109/ICREST51555.2021.9331013.
H. Ravishankar et al., “Understanding the Mechanisms of Deep Transfer Learning for Medical Images,” pp. 68–76, 2017, doi: 10.1007/978-3-319-46976-8.
Indexed and Journal List Title by: