SqueezeNet Feature Extraction dan Gradient Boosting untuk Klasifikasi Penyakit Monkeypox pada Citra Kulit
Main Article Content
Abstract
Pada tahun 2022 WHO menerima laporan dari negara-negara non-endemik tentang kasus penyakit monkeypox (cacar monyet). Saat ini, terdapat 12 negara non-endemik di tiga wilayah WHO yaitu Eropa, Amerika, dan Pasifik Barat yang dilaporkan telah terjangkit virus cacar monyet. Monkeypox menunjukkan gejala serupa dengan cacar tetapi dengan tingkat keparahan yang berbeda, memerlukan identifikasi dan penanganan yang cepat untuk mencegah penularan lebih lanjut. Identifikasi penyakit monkeypox secara cepat dan akurat dapat dilakukan dengan pendekatan kecerdasan buatan yaitu model machine learning. Salah satu metode yang dapat digunakan untuk melakukan analisis data citra medis adalah metode Gradient Boosting. Penelitian ini mengembangkan konsep model klasifikasi penyakit monkeypox dengan menerapkan arsitektur Deep Learning, yaitu SqueezNet + chi-square, tiga metode Gradient Boosting sebagai metode klasifikasi. Hasil eksperimen menunjukkan kombinasi model SqueezNet + chi-square + XGBoost menghasilkan performansi yang lebih baik dari kombinasi dua model yang lain, dengan akurasi sebesar 0.943, presisi sebesar 0.942, dan AUC sebesar 0.987.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Sistem dan Informatika (JSI) bersifat open access, yaitu dapat diakses secara umum tanpa dikenakan biaya. Penulis yang menerbitkan artikelnya di JSI setuju dengan ketentuan berikut:- JSI menggunakan perjanjian lisensi ekslusif, yaitu penulis memegang hak cipta atas artikel dan memberikan hak publikasi kepada Jurnal Sistem dan Informatika (JSI).
- JSI mempunyai hak ekslusif untuk mempublikasi dan mendistribusikan artikel secara sebagian atau keseluruhan, dan memberikan hak kepada orang lain sesuai dengan lisensi yang digunakan.
- JSI berhak untuk menyediakan artikel dalam berbagai bentuk dan media, sehingga artikel dapat digunakan untuk teknologi terbaru bahkan setelah dipublikasikan.
- JSI berhak untuk menegakkan hak-hak atas nama penulis pada artikel terhadap pihak ketiga. Misalnya dalam kasus plagiarisme atau pelanggaran hak cipta.
- Artikel harus dirujuk, link terhadap lisensi harus disediakan, dan jika terdapat bagian artikel yang diubah harus ditandai.
- Jika artikel disadur sehingga terdapat perubahan, hasil saduran harus didistribusikan menggunakan lisensi yang sama.
- Tidak diperkenankan untuk membatasi orang lain terhadap apa yang diperbolehkan oleh lisensi.
References
“diagnostics-13-01772-v2.pdf.crdownload.”
S. T. Al Awaidy, F. Khamis, M. Sallam, R. M. Ghazy, and H. Zaraket, “Monkeypox (mpox) Outbreak More queries posed as cases soar globally,” Sultan Qaboos Univ Med J, vol. 23, no. 1, pp. 1–4, 2023, doi: 10.18295/squmj.8.2022.046.
H. Hatami et al., “Demographic, Epidemiologic, and Clinical Characteristics of Human Monkeypox Disease Pre- and Post-2022 Outbreaks: A Systematic Review and Meta-Analysis,” Biomedicines, vol. 11, no. 3, 2023, doi: 10.3390/biomedicines11030957.
C. J. Tseng and C. Tang, “An optimized XGBoost technique for accurate brain tumor detection using feature selection and image segmentation,” Healthcare Analytics, vol. 4, no. April, p. 100217, 2023, doi: 10.1016/j.health.2023.100217.
W. Bakasa and S. Viriri, “VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas Cancer Prediction,” J Imaging, vol. 9, no. 7, 2023, doi: 10.3390/jimaging9070138.
M. Lakshmi and R. Das, “Classification of Monkeypox Images Using LIME-Enabled Investigation of Deep Convolutional Neural Network,” Diagnostics, vol. 13, no. 9, 2023, doi: 10.3390/diagnostics13091639.
A. A. Aouragh and M. Bahaj, “Comparison Results of Hybrid CNN-Machine Learning Algorithms Architectures for Monkeypox Images Classification,” 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2023, pp. 1–6, 2023, doi: 10.1109/IRASET57153.2023.10153062.
P. E. N. Taruno, G. S. Nugraha, R. Dwiyansaputra, and F. Bimantoro, “Monkeypox Classification based on Skin Images using CNN: EfficientNet-B0,” E3S Web of Conferences, vol. 465, 2023, doi: 10.1051/e3sconf/202346502031.
F. Aldi, I. Nozomi, R. B. Sentosa, and A. Junaidi, “Machine Learning to Identify Monkey Pox Disease,” Sinkron, vol. 8, no. 3, pp. 1335–1347, 2023, doi: 10.33395/sinkron.v8i3.12524.
Z. He, D. Lin, T. Lau, and M. Wu, “Gradient Boosting Machine: A Survey,” pp. 1–9, 2019, [Online]. Available: http://arxiv.org/abs/1908.06951
D. Bala et al., “MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification,” Neural Networks, vol. 161, pp. 757–775, 2023, doi: 10.1016/j.neunet.2023.02.022.
N. Fragoulis, “A fast , embedded implementation of a Convolutional Neural Network for Image A fast , embedded implementation of a Convolutional Neural Network for Image Recognition,” no. August, pp. 1–4, 2016, doi: 10.13140/RG.2.1.1778.9681.
P. D. Wulaning Ayu and G. A. Pradipta, “U-Net Tuning Hyperparameter for Segmentation in Amniotic Fluid Ultrasonography Image,” 2022 4th International Conference on Cybernetics and Intelligent System, ICORIS 2022, 2022, doi: 10.1109/ICORIS56080.2022.10031294.