Model Ekstraksi Fitur Berbasis Tekstur untuk Identifikasi Keaslian Objek
Main Article Content
Abstract
Identifikasi keaslian objek merupakan aspek penting dalam berbagai sektor, termasuk keamanan dan perdagangan, guna mencegah kerugian finansial dan reputasi akibat pemalsuan. Penelitian ini mengembangkan model klasifikasi berbasis tekstur dengan menggunakan metode Decision Tree dan Logistic Regression untuk membedakan antara objek asli dan palsu. Model ini memanfaatkan Gray Level Co-occurrence Matrix (GLCM) untuk ekstraksi fitur tekstur, yang kemudian diklasifikasi menggunakan kedua metode tersebut. Hasil evaluasi menunjukkan bahwa Decision Tree memiliki kinerja yang lebih unggul dibandingkan Logistic Regression, dengan akurasi sebesar 96.37%, recall 97.67%, dan F1 score 94.92%, menjadikannya lebih efektif dalam mendeteksi keaslian objek. Sementara itu, Logistic Regression mencapai presisi lebih tinggi, yaitu 98.15%, namun mengalami penurunan performa dalam recall dan F1 score. Berdasarkan hal tersebut Decision Tree menunjukkan keseimbangan yang lebih baik antara berbagai metrik evaluasi dan lebih cocok untuk identifikasi keaslian objek.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Sistem dan Informatika (JSI) bersifat open access, yaitu dapat diakses secara umum tanpa dikenakan biaya. Penulis yang menerbitkan artikelnya di JSI setuju dengan ketentuan berikut:- JSI menggunakan perjanjian lisensi ekslusif, yaitu penulis memegang hak cipta atas artikel dan memberikan hak publikasi kepada Jurnal Sistem dan Informatika (JSI).
- JSI mempunyai hak ekslusif untuk mempublikasi dan mendistribusikan artikel secara sebagian atau keseluruhan, dan memberikan hak kepada orang lain sesuai dengan lisensi yang digunakan.
- JSI berhak untuk menyediakan artikel dalam berbagai bentuk dan media, sehingga artikel dapat digunakan untuk teknologi terbaru bahkan setelah dipublikasikan.
- JSI berhak untuk menegakkan hak-hak atas nama penulis pada artikel terhadap pihak ketiga. Misalnya dalam kasus plagiarisme atau pelanggaran hak cipta.
- Artikel harus dirujuk, link terhadap lisensi harus disediakan, dan jika terdapat bagian artikel yang diubah harus ditandai.
- Jika artikel disadur sehingga terdapat perubahan, hasil saduran harus didistribusikan menggunakan lisensi yang sama.
- Tidak diperkenankan untuk membatasi orang lain terhadap apa yang diperbolehkan oleh lisensi.
References
D. M. Ballesteros, Y. Rodriguez, and D. Renza, “A dataset of histograms of original and fake voice recordings (H-Voice),” Data Br., vol. 29, p. 105331, 2020, doi: 10.1016/j.dib.2020.105331.
F. T. Kurniati and R. R. Huizen, “Verifikasi Dokumen Cetak Menggunakan Metode Edge Detection-Glcm Dan K-Mean Clustering,” Dinamik, vol. 25, no. 2, pp. 85–93, 2020, doi: 10.35315/dinamik.v25i2.8188.
A. C. Valente et al., “Print defect mapping with semantic segmentation,” Proc. - 2020 IEEE Winter Conf. Appl. Comput. Vision, WACV 2020, pp. 3540–3548, 2020, doi: 10.1109/WACV45572.2020.9093470.
S. Ranjan, P. Garhwal, A. Bhan, M. Arora, and A. Mehra, “Framework for Image Forgery Detection and Classification Using Machine Learning,” Proc. 2nd Int. Conf. Intell. Comput. Control Syst. ICICCS 2018, no. Iciccs, pp. 1872–1877, 2019, doi: 10.1109/ICCONS.2018.8663168.
G. Mukarambi, H. Gaikwadl, and B. V. Dhandra, “Segmentation and Text extraction from Document Images: Survey,” 2019 Innov. Power Adv. Comput. Technol. i-PACT 2019, pp. 1–5, 2019, doi: 10.1109/i-PACT44901.2019.8960097.
R. Ghosh, C. Panda, and P. Kumar, “Handwritten Text Recognition in Bank Cheques,” 2018 Conf. Inf. Commun. Technol. CICT 2018, 2018, doi: 10.1109/INFOCOMTECH.2018.8722420.
M. Ali, A. Sabir, and M. Hassan, “Fake audio detection using Hierarchical Representations Learning and Spectrogram Features,” Int. Conf. Robot. Autom. Ind., 2021.
A. Hamid, M. Bibi, I. Siddiqi, and M. Moetesum, “Historical manuscript dating using textural measures,” Proc. - 2018 Int. Conf. Front. Inf. Technol. FIT 2018, pp. 235–240, 2019, doi: 10.1109/FIT.2018.00048.
J. Kozak, K. Kania, P. Juszczuk, and M. Mitręga, “Swarm intelligence goal-oriented approach to data-driven innovation in customer churn management,” Int. J. Inf. Manage., vol. 60, no. May, 2021, doi: 10.1016/j.ijinfomgt.2021.102357.
M. Guo et al., “A study of freeway crash risk prediction and interpretation based on risky driving behavior and traffic flow data,” Accid. Anal. Prev., vol. 160, Sep. 2021, doi: 10.1016/j.aap.2021.106328.
K. Balachandar and R. Jegadeeshwaran, “Friction stir welding tool condition monitoring using vibration signals and Random forest algorithm - A Machine learning approach,” in Materials Today: Proceedings, 2021, vol. 46, pp. 1174–1180, doi: 10.1016/j.matpr.2021.02.061.
F. Utaminingrum, S. J. A. Sarosa, C. Karim, F. Gapsari, and R. C. Wihandika, “The combination of gray level co-occurrence matrix and back propagation neural network for classifying stairs descent and floor,” ICT Express, vol. 8, no. 1, pp. 151–160, 2022, doi: 10.1016/j.icte.2021.05.010.
S. Saifullah and R. Drezewski, “Non-Destructive Egg Fertility Detection in Incubation Using SVM Classifier Based on GLCM Parameters,” Procedia Comput. Sci., vol. 207, no. Kes, pp. 3248–3257, 2022, doi: 10.1016/j.procs.2022.09.383.
X. Zhao, H. Yang, Y. Yao, H. Qi, M. Guo, and Y. Su, “Factors affecting traffic risks on bridge sections of freeways based on partial dependence plots,” Phys. A Stat. Mech. its Appl., vol. 598, Jul. 2022, doi: 10.1016/j.physa.2022.127343.